Electrical Discharges: An Emerging Modality in Sterilization, Disinfection, and Therapeutics

  • Soumyadeep C. Sarkar Birla Institute of Technology, Mesra, Ranchi
  • Niharika Verma Birla Institute of Technology, Mesra, Ranchi
  • Pawan Kumar Tiwari Birla Institute of Technology Mesra Ranchi
Keywords: Thermal and Non-Thermal Plasma, Sterilization, Disinfection, Cell Proliferation, Dielectric Barrier Discharge, Argon Plasma Coagulator


Electrical discharges are the key mechanism to the generation of atmospheric pressure plasmas which are further classified as equilibrium and non-equilibrium plasmas, also referred to as thermal and non-thermal plasmas. The technological advancement of non-thermal plasma has extended its potential clinical non-invasive applications in a multitude of disciplines such as dermatology, ophthalmology and oncology, etc. to bolster tissue generation, refraction error correction and necrosis of the cancerous cells in the domain of plasma medicine, respectively. A fundamental on the various types of discharges and their mechanism is investigated. A perspective on the application of non-thermal plasmas in the domains such as sterilization and disinfection is presented in this review. We have focused on the plasma therapeutics and its significance as a clean and dry therapy to treat superficial skin diseases via the mechanism of proliferation of basal skin cells and prothrombin stimulation to cauterize the blood through Argon Plasma generated by Argon Plasma Coagulator. We propose to fabricate atmospheric pressure plasma devices and understanding of the associated plasma radicals that aids in the activation of biochemical and biomolecular reactions to treat the cutaneous and sub-cutaneous diseases.


[1] Francis F. Chen, Introduction to Plasma Physics and Controlled Fusion, 3rd edition, pp.1-11.
[2] Fridman, A. (2008). Plasma chemistry. Cambridge university press.
[3] IUPAC, Compendium of Chemical Terminology, 2nd ed. (the Gold Book) (1997). Online correctedversion:photoionization.doi:10.1351/goldbook.P04620
[4] Tonks, Lewi; Langmuir, Irving (1929).” Oscillations in ionized gases”. Physical Review. 33 (8): 195-210.
[5] "Structure formation in a DC-driven "barrier" discharge stability analysis and numerical solutions" (PDF). Publication date July 15–20, 2007. ICPIG Prague, Czech Republic. Retrieved 9 December 2010
[6] Matsuno, Hiromitsu, Nobuyuki Hishinuma, Kenichi Hirose, Kunio Kasagi, Fumitoshi Takemoto, Yoshinori Aiura, and TatsushiIgarashi. “Dielectric barrier discharge lamp, United States Patent 5757132(Commercial website)”. Freepatentsonline.com. First published 1998-05-26. Retrieved on 2007-08-05.
[7] Dhali, S.K.; Sardja, I. (1989). "Dielectric-barrier discharge for the removal of SO/Sub 2/ From flue gas". IEEE International onference on Plasma Science. p. 150.
[8] M. Laroussi, I. Alexeff, J. P. Richardson, and F. F. Dyer " The Resistive Barrier Discharge", IEEE Trans. Plasma Sci. 30, 158 (2002).
[9] Own work Francis E Williams. 10 Dec 2010.
[10] "Dielectric-Barrier Discharges. Principle and Applications"(PDF). ABB Corporate Research Ltd., Baden, Switzerland. 11 October 1997. Retrieved 19 January 2013.
[11] Ronny Brandenburg “Corrigendum: Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments” 2017 Plasma Sources Sci. Technol. 26 053001. p. 9-10.
[12] Moiseev T, Misra N N, Patil S, Cullen P J, Bourke P, Keener K M and Mosnier J P 2014 Plasma Sources Sci. Technol. 23 065033
[13] Emmert S et al 2013 Clin. Plasma Med. 1 24–9
[14] Sakudo, A., Yagyu, Y., & Onodera, T. (2019). “Disinfection and sterilization using plasma technology: fundamentals and future perspectives for biological applications”. International journal of molecular sciences, 20(20), 5216.
[15] Schneider, P. M. (2013). “New technologies and trends in sterilization and disinfection”. American journal of infection control, 41(5), S81-S86.
[16] Hayashi, N., Goto, M., Itarashiki, T., Yonesu, A., & Sakudo, A. (2018). “Current plasma sterilization and disinfection studies”. Journal of Photopolymer Science and Technology, 31(3), 389-398.
[17] Weltmann K-D, Fricke K, Stieber M, Brandenburg R, von Woedtke T and Schnabel U 2012 IEEE Trans. Plasma Sci. 40 2963–915
[18] Polak M, Winter J, Schnabel U, Ehlbeck J and Weltmann K-D 2012 Innovative Plasma Generation in Flexible Biopsy Channels for Inner‐Tube Decontamination and Medical Applications. Plasma Process. Polym. 9 67–76
[19] von Woedtke, Th. Reuter, S. Masur, “Plasmas for medicine”,Physics Reports,Volume 530, Issue 4, Sept. 2013
[20] Gregory Fridman, Alexey Shereshevsky, Monika M. Jost, Ari D. Brooks, Alexander Fridman, Alexander Gutsol, Victor Vasilets & Gary Friedman “Plasma Chemistry and Plasma Processing” volume 27, pages163–176(2007)
[21] Jesús Gay-Mimbrera, Maria Carmen García, Beatriz Isla-Tejera, Antonio Rodero-Serrano, Antonio Vélez García-Nieto & Juan Ruano “Advances in Therapy” volume 33, pages894–909(2016)
[22] Koji Torii, Suguru Yamada, Kae Nakamura, Hiromasa Tanaka, Hiroaki Kajiyama, Kuniaki Tanahashi, Naoki Iwata, Mitsuro Kanda, Daisuke Kobayashi, Chie Tanaka, Tsutomu Fujii, Goro Nakayama, Masahiko Koike, Hiroyuki Sugimoto, Shuji Nomoto, Atsushi Natsume, Michitaka Fujiwara, Masaaki Mizuno, Masaru Hori, Hideyuki Saya & Yasuhiro Kodera “Effectiveness of plasma treatment on gastric cancer cells” Gastric Cancer, volume 18, pages635– 643(2015)
[23] Wang M, Holmes B, Cheng X, Zhu W, Keidar M, Zhang LG (2013) “Cold Atmospheric Plasma for Selectively Ablating Metastatic Breast Cancer Cells”. PLoS ONE 8(9): e73741. https://doi.org/10.1371/journal.pone.0073741
[24] Brullé L, Vandamme M, Riès D, Martel E, Robert E, Lerondel S, et al. (2012) “Effects of a Non Thermal Plasma Treatment Alone or in Combination with Gemcitabine in a MIA PaCa2-luc Orthotopic Pancreatic Carcinoma Model”. PLoS ONE 7(12): e52653. https://doi.org/10.1371/journal.pone.0052653
[25] Kim JY, Ballato J, Foy P, Hawkins T, Wei YZ, Li JH, et al. “Apoptosis of lung carcinoma cells induced by a flexible optical fiber-based cold microplasma”. Biosens Bioelectron. 2011;28(1):333–8.21
[26] Li, W., Yu, K., Bao, L. et al. “Non-thermal plasma inhibits human cervical cancer HeLa cells invasiveness by suppressing the MAPK pathway and decreasing matrix metalloproteinase-9 expression”. Sci Rep 6, 19720 (2016). https://doi.org/10.1038/srep19720
[27] Rafael Guerrero-Preston, Takenori Ogawa, Mamoru Uemura, Gary Shumulinsky, Blanca L. Valle, Francesca Pirini, Rajani Ravi, David Sidransky, Michael Keidar, Barry Trink “cold atmospheric plasma treatment selectively targets head and neck squamous cells carcinoma cells”. Int J Mol Med. P: 941-946, Published online on: July 11, 2014
[28] N Barekzi and M Laroussi, “Dose-dependent killing of leukemia cells by low-temperature plasma”, J. Phys. D: Appl. Phys., October 2012, 45 422002
[29] Vermeylen S, De Waele J, Vanuytsel S, De Backer J, Van der Paal J, Ramakers M, et al. “Cold atmospheric plasma treatment of melanoma and glioblastoma cancer cells”. Plasma Processes Polym. 2016;13(12):1195–205.
[30] Pawan K. Tiwari, Yeon Soo Lee “Non-thermal plasmas induced electrostatic stress on corneocyte desquamation” Acta of Bioengineering and Biomechanics Vol. 15, No. 2, 2013
[31] https://de.erbe-med.com/de-en/
[32] Laroussi M. Low-temperature plasma jet for biomedical applications: a review. IEEE T Plasma Sci. 2015;43(3):703–712. doi: 10.1109/TPS.2015.2403307.
[33] Ha KS, Kim KM, Kwon YG, Bai SK, Nam WD, Yoo YM, et al. Nitric oxide prevents 6-hydroxydopamine-induced apoptosis in PC12 cells through cGMP-dependent PI3 kinase/Akt activation. FASEB J. 2003;17(9):1036–1047. doi: 10.1096/fj.02-0738com.
[34] Lundberg JO, Gladwin MT, Weitzberg E. Strategies to increase nitric oxide signalling in cardiovascular disease. Nat Rev Drug Discov. 2015;14(9):623. doi: 10.1038/nrd4623.
How to Cite
Sarkar, S., Verma, N., & Tiwari, P. (2021). Electrical Discharges: An Emerging Modality in Sterilization, Disinfection, and Therapeutics. Majlesi Journal of Telecommunication Devices, 10(1), 23-32. Retrieved from http://journals.iaumajlesi.ac.ir/td/index/index.php/td/article/view/651