A Model for Environmental Map Production in Robotic Applications Using Fuzzy Logic

Elaheh Sayari¹, Saeed Toosizadeh²

¹- Electrical and Computer Engineering Department, Mashhad Branch, Islamic Azad University, Mashhad, Iran
E-mail: elahe.sayari.66@gmail.com

²- Electrical and Computer Engineering Department, Mashhad Branch, Islamic Azad University, Mashhad, Iran
E-mail: saeedtoosizadeh@yahoo.com

Received Feb 2012 Revised Apr 2012 Accepted Jun 2012

ABSTRACT:
Robotics has use as a definition in researches during the past decades and so far high growth has been in different fields. The main reason for the growth of robotics is due to advancements in their hardware. With all the hardware advancements, autonomous mobile robots have become a very important topic. Since the number of applications for autonomous robots is continuing to grow, complex physical components and sensors are used in the design of mobile robots to require a large amount of money. This paper examines how to map the surrounding environment in a building using fuzzy logic and low-cost robots that has designed with two sensors. In this paper, a fuzzy inference system is developed which examines a small local area and continuously assembles a global map of the environment. We have classified nine probable relative local locations and through a random exploration of the environment a complete global map is created. This map is a graphical representation that can easily be used by a human observer. In the future, we also consider that use a combination of neural network and fuzzy logic to create an Adaptive Neuro-Fuzzy Inference System (ANFIS).

KEYWORDS: Robotics, Fuzzy Logic, Environment, Map, Graphical

1. INTRODUCTION
Robotics has always been a popular research area. In recent years, the growth of robotics in various fields is due to advantages in robot hardware, e.g. high-speed wireless communication, ad-hoc network algorithms, low power CPUs, GPS systems and etc. Another reason for growth in the area is due to the limitless potential applications.

An important aspect of autonomous mobile robots is the ability to have precise navigation in the robotic systems. Navigation in autonomous systems is a non-trivial task depending on the application. Some applications for autonomous robots include: land mine detection, exploration of landscapes such as Mars, urban vehicle navigation, maze solving contests in academia, and household tasks such as vacuum cleaning and lawn mowing. Each of these applications has their own difficulties in implementation. Some applications require extremely rudimentary intelligence while other will require advanced artificial intelligence. Autonomous lawn mowing, for example, only requires a set of boundaries as a group of GPS coordinates or underground land markers.

Other applications require large amount of environmental data, as in the exploration of Mars, due to the number unknown conditions [1].

Our paper develops a fuzzy inference system (FIS) for autonomous applications. This paper examines the environmental mapping required in autonomous robots used in a search and rescue scenario. One possible example of a search and rescue application includes firefighters needing data about a building that is on fire. Since a burning building is a dangerous situation, autonomous robots can provide an additional layer of safety to the rescue workers. The robots could be placed inside a building through any windows or doorways. The robots will have to quickly create a floor plan of the building to wirelessly transmit to rescue workers outside the building [2]. Given this scenario, the robot may not be able to rely on computer vision based on visual obstacles, so ultra-sonic sensors to measure wall distance are used in this paper.

2. PREVIOUS RESEARCH
The problem of environmental mapping is not new. Many researchers have looked into determining how to
accurately map the environment. Two of the main difficulties of environmental mapping are how to efficiently scan the entire surface area of the environment and how to account for the physical limitations of the physical systems.

The physical system, the robot, is made up of many mechanical parts and electrical components. In this paper, two robots are designed to move forward, right side, left side, turn clockwise and turn counterclockwise. Ideally these movements will be precise and have no variations over time.

Most of the mapping research has fallen into two different techniques: topological and geometrical. Topological mapping results in a qualitative representation of the environment [1, 3 and 6]. The physical system is not highly modeled resulting in non-precise mapping, but rough estimates are available. Topological mapping will allow the robot to have a generalized representation of its location in the environment. For a quick breakdown of the environment, only a topological mapping technique is important. Topological data allows for enough information for navigation and waypoint marking. Topological mapping is commonly represented as a set of graphs [2]. Geometrical techniques will take into account the physical system in more detail than the topological techniques.

The papers by Kuipers [1], Thrun [3] and Folcik [6] provide some insight into current topological mapping techniques. The work in [1] applies a model of the human cognitive map to determine topological information. The focus of the paper is to develop a complete methodology based on sensory, control, causal, topological, and metrical criteria.

The work done [3] develops a map based on particle filtering techniques. Their research uses Bayesian and Bayes filters to provide a highly detailed motion model of the robot. The downfall of [3] is that a large amount of computational power is needed for the robot to develop the map.

The work done by [6] is a topological technique that uses FIS for qualitative representation of the environment by two ultra-sonic sensors.

Thus, our research is a topological technique that uses a FIS to develop a qualitative representation of the environment by two ultra-sonic sensors. Also this method will spend less money compared to other methods.

3. FUZZY INFERENCE SYSTEM MODEL

Many of the existing mapping techniques require many different types of sensors (laser distance sensors, GPS systems, tilt sensing, etc) and sensors with high sensitivity. The goal of this research is to develop a robust mapping technique with a minimal number of sensors that can have any degree of sensitivity and still develop a reasonable topological map of the environment. By using fuzzy logic we are able to determine position with great flexibility and compensate for the error due to the physical components of the robot. We design the fuzzy logic mapping to be used on robots similar to Figure 1. The robot shown in Fig. 1(a) has the following components: 2 ultra-sonic distance sensors (one on right side and front of the robot), a magnetic compass and a gyroscope that can be used to realign the robot due to the motion drift. The magnetic compass and gyroscope are not used in the FIS but are instead used to find direction and error in the motor movement. The ultra-sonic sensors are sampled regularly and the data is passed into the FIS.

Also the robot shown in Fig. 1(b) has the following components: 2 ultra-sonic distance sensors (one on left side and front of the robot), a magnetic compass and a gyroscope.

![Fig. 1. Two robots with their components.](image-url)
motion or spend a large amount of money on the most precise sensors available.

The purpose of using FIS is to mask the errors and noise in the system. The fuzzy logic can use cheap sensors and generalize the distance into quantitative measurements such as very close, close, medium, far and very far. The motion drift can also be accounted for because the sensor data is quantitative so the movements do not need to be highly predictable. We have decided to create a FIS to make the robot insensitive to the errors that would occur in operation. The goal of the FIS in environmental mapping is to determine the robot’s relative location. The interior of a building is very similar to a maze. The relative location of the robot can be one of the following situations: the robot is in free open space; the robot is in a dead end; or the robot has a wall or walls next to it. The interior of building is broken down into a set of nine potential absolute locations inside a building. Each of the absolute locations will be given an index value the robot can use in its processing; we will refer to the absolute locations as the absolute location index where the index number refers to the numbers found in Fig. 2.

We have required that the robot have some sense of magnetic direction to determine north, south, west and east used to distinguish absolute position index 1 from absolute position index 2. FIS is perfect for this application because we are only concerned with a rough floor of the system. Figure 3 shows how the FIS output will be an approximation of actual locations inside a building. The FIS will find the best fit from the actual environment and our nine absolute locations.

The output of FIS is also mapped into a set of...
membership functions (Fig. 5). A set of fuzzy rules and defuzzification will determine which membership function the output is mapped.

The relative location output can be one of eight choices: 1) no walls, 2) a right wall, 4) a right and front wall, 6) front wall.

The matching from the inputs to the output is done through a set of fuzzy rules. The rules used in this research are intuitive but can be expanded in the future. The rules set up which membership function from the inputs should give the correct values for the output membership functions. The rules implemented in the fuzzy system are as follows:

- If (RIGHT is FAR) and (FRONT is FAR) then (RELATIVELOCATION is NW)
- If (RIGHT is CLOSE) and (FRONT is FAR) then (RELATIVELOCATION is RW)
- If (RIGHT is FAR) and (FRONT is CLOSE) then (RELATIVELOCATION is FW)
- If (RIGHT is CLOSE) and (FRONT is CLOSE) then (RELATIVELOCATION is RF)

A visual example showing how the inputs enter the system and the corresponding generated output is given in Fig. 6.

3.2. Fuzzy Logic Rules Set and Defuzzification for Robot Shown in Fig. 1(b)

The FIS we created is based on a mamdani fuzzy model too. For robot in Fig. 1(b), the system is created with two inputs and one output. The two inputs correspond to the two ultra-sonic sensors: LEFT SIDE and FRONT SIDE. The output that is created is the RELATIVE LOCATION in the maze. The output of the FIS is the relative location.

The relative location output can be one of eight choices: 1) no walls, 2) a left wall, 4) a left and front wall, 6) front wall.

Rules:

- If (LEFT is FAR) and (FRONT is FAR) then (RELATIVELOCATION is NW)
- If (LEFT is CLOSE) and (FRONT is FAR) then (RELATIVELOCATION is LW)
- If (LEFT is FAR) and (FRONT is CLOSE) then (RELATIVELOCATION is FW)
- If (LEFT is CLOSE) and (FRONT is CLOSE) then (RELATIVELOCATION is RF)

Results of simulation for robot in Fig. 1(b) are shown in Figs. 7.
4. USING THE FUZZY LOGIC OUTPUT TO FIND LOCATION IN THE ENVIRONMENT

The FIS output only gives a relative approximate environment location based on the current position of the robot. To find the absolute environment location the direction the robot is facing needs to be taken into account. The robot is equipped with a magnetic compass to determine North, South, East, and West direction inside the building. Given the relative output along with the robot direction heading we can determine the absolute position index shown in Fig. 2.

For example, the FIS output determines the robot has a wall in front of it. In order to get a detailed picture of the environment we need to be able to determine if the wall in front is North facing wall of the building (absolute position index 1), South facing wall (absolute position index 2), East facing wall (absolute position index 3), or West facing wall (absolute position index 4). In order to determine which absolute position index our robot is currently situated in, the FIS and direction are processed together. A map can easily be created to determine the location. Another benefit of the FIS system and the absolute location look up is a
second level of protection against errors. It is possible that a sensor may give erroneous data or fail to produce any data. The wrong information passed into the FIS will produce incorrect interpretations. The robot will determine the appropriate location it thinks it has found and if the location is revisited it can recalculate its absolute position index by using superposition of the two erroneous locations.

For example, consider a situation where the left ultra-sonic sensor breaks during operation. The robot is in absolute position index 10 facing south. Given that only the right sensor and front sensor are functioning the fuzzy system tells the robot that it only has a front wall so the robot infers it is in position index 5. The robot then makes a 180º turn and now the fuzzy system determines a right wall is present. Given that the location has been visited before we can sum up the given position indices and make a new determination that the absolute location is not absolute position index 5 but index 10. By having the direction element in our system, the robot has a built in redundancy element.

5. SIMULATION

A simulation was created to test the FIS for accuracy on a number of different building environments. The simulation looked at creating a maze to simulate the inside of a building. The maze was designed to model as a grid. The robot will move one grid cell at a time in north, south, east, or west direction. Once the robot is in a cell the robot will sample the ultra-sonic sensors. The ultra-sonic sensors were modeled in the simulation to resemble non-ideal operation. At each cell the simulation calculated the distance to a wall for each ultrasonic sensor and adjusted the distance measurement by adding noise through a Gaussian distribution. The simulation showed that the FIS was always able to accurately generate an environment map of the maze. One item that was not examined in this research was how to efficiently explore the open maze surface. The simulation explored the maze by randomly picking a direction to move when the robot entered a new cell. The simulation resulted in a large number of the cells being revisited. Figure 8 shows one example of a maze generated for testing the FIS system. The robot generated two sets of data from the FIS output.

Fig. 8. Sample building example used in simulation
Each robot shown in Fig. 1(a, b) are able to survey four mazes shown in Fig. 9.

Fig. 9. Four of the tested map by robots

The first set of data is an array that can be used to generate a visual map of the environment. Figure 10 displays the corresponding environment map array by robot shown in Fig. 1(b). Each number in the map array corresponds to one of the nine absolute position indices in Fig. 2.

Fig. 10. Environment map created from FIS. Numbers correspond to absolute location index.

6. CONCLUSION

Autonomous robots have limitless potential applications and many commercial applications for them have been developed or currently are in development. In order for many autonomous robots to perform their goals effectively they will need to be able
to create maps of their environment. There are many previously well established techniques, but this paper lays out a very flexible and robust technique. By using fuzzy logic, our robots are able to map out the environment with high precision sensors. Another advantage of the system is that the mapping can still be achieved even if a sensor becomes disabled during the robot’s mission. An important environment map is created. This map is a graphical representation that can easily be used by a human observer.

Also this paper has used two sensors that economize a large amount of money on the most precise sensors available and in making robots.

In the future, we also consider that use a combination of neural network and fuzzy logic to create an Adaptive Neuro-Fuzzy Inference System (ANFIS). The ANFIS system that was created was able to learn the maze two robots were in and determine how two robots should navigate. The outputs of the ANFIS system told two robots to follow the wall, turn around, turn the corner, etc.

REFERENCES

