Derivation of Load Peak Voltage, Power Consumption and Potential Energy Management in a Thyristor Controlled Marx Impulse Generator for Capacitor Discharge Application

  • Arash Toudeshki Universiti Putra Malaysia
  • Norman Mariun Universiti Putra Malaysia
  • Hashim Hizam Universiti Putra Malaysia
  • Noor Izzri Abdul Wahab Universiti Putra Malaysia
  • Mojgan Hojabri University Malaysia Pahang (UMP)
  • Yunusa Ali Sai’d Universiti Putra Malaysia
  • Omidreza Saadatian Universiti Kebangsaan Malaysia
  • Muhammad Mansoor Universiti Putra Malaysia
  • Elham Saadatian National University of Singapore (NUS)

Abstract

Calculation of the load peak voltage, potential energy and power consumption of a Marx impulse generator, as a function of time, are presented. The equations are generalized and can be used to the design of any type of n-stage Marx impulse generator. The results were validated for a thyristor controlled Marx impulse generator with a maximum number of stages of 10 and 3 kV input DC voltage, which used 1 MΩ resistors and 33 nF capacitors in its topology.

Author Biographies

Arash Toudeshki, Universiti Putra Malaysia
Centre for Advance Power and Energy Research (CAPER), Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malayasia
Norman Mariun, Universiti Putra Malaysia
Centre for Advance Power and Energy Research (CAPER), Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malayasia
Hashim Hizam, Universiti Putra Malaysia
Centre for Advance Power and Energy Research (CAPER), Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malayasia
Noor Izzri Abdul Wahab, Universiti Putra Malaysia
Centre for Advance Power and Energy Research (CAPER), Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malayasia
Mojgan Hojabri, University Malaysia Pahang (UMP)
Faculty of Electrical and Electronics Engineering, University Malaysia Pahang (UMP), 26600 Pekan, Malaysia.
Yunusa Ali Sai’d, Universiti Putra Malaysia
Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malayasia.
Omidreza Saadatian, Universiti Kebangsaan Malaysia
Solar Energy Research Institute (SERI), Level 3, Perpustakaan Tun Sri Lanang, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
Muhammad Mansoor, Universiti Putra Malaysia
Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malayasia.
Elham Saadatian, National University of Singapore (NUS)
Keio-NUS CUTE, National University of Singapore (NUS), Singapore 119613, Singapore.

References

V. M. Orlovskii, A. N. Panchenko, and V. F. Tarasenko, “Electric-discharge high-peak-power CO2 laser,” Quantum Electronics, vol. 40, no. 3, p. 192, 2010.

S. Saboohi, S. L. Yap, L. S. Chan, and C. S. Wong, “Effects of Inter-electrode Gap and Discharge Voltage on EUV Emission from Stainless Steel Vacuum Spark Plasma,” Sains Malaysiana, vol. 41, no. 7, pp. 879–884, 2012.

S. Saboohi, S. L. Yap, L. S. Chan, and C. S. Wong, “Investigation of the Temporal Evolution of X-Ray Emission From a Copper Vacuum Spark Plasma,” IEEE Transactions on Plasma Science, vol. 40, no. 12, pp. 3390–3394, Dec. 2012.

C.-S. Ha, D.-H. Kim, H. J. Lee, and H.-J. Lee, “Development of an energy controlled DC pulse discharge for atmospheric pressure plasma applications,” in 2010 Abstracts IEEE International Conference on Plasma Science, 2010, pp. 1–1.

L. W. and Z. D. and K. Fei, “The Impact of Electrode Configuration on Characteristics of Vacuum Discharge Plasma,” Plasma Science and Technology, vol. 14, no. 2, p. 122, 2012.

X. Luo, Q. S. Luo, Y. G. Cao, and L. Shi, “Hardware Design of Electronic Ignition System for Special Electromechanical Device,” Applied Mechanics and Materials, vol. 58, pp. 491–494, 2011.

S. C. Agarwal, “Analysis of the thermally stimulated capacitor-discharge method for characterizing localized states in amorphous semiconductors,” Physical Review B, vol. 10, no. 10, p. 4340, 1974.

W. M. Rosellini, P. B. Yoo, N. Engineer, S. Armstrong, R. L. Weiner, C. Burress, and L. Cauller, “A Voltage Controlled Capacitive Discharge Method for Electrical Activation of Peripheral Nerves,” Neuromodulation: Technology at the Neural Interface, vol. 14, no. 6, pp. 493–500, 2011.

S. Müller and R.-J. Zahn, “Air Pollution Control by Non-Thermal Plasma,” Contributions to Plasma Physics, vol. 47, no. 7, pp. 520–529, Nov. 2007.

A. Toudeshki, N. Mariun, H. Hizam, and N. I. A. Wahab, “The energy and cost calculation for a Marx pulse generator based on input DC voltage, capacitor values and number of stages,” in Power and Energy (PECon), 2012 IEEE International Conference on, 2012, pp. 745–749.

W. L. Willis, “Pulse voltage circuits,” Los Alamos National Lab., NM (USA), United States, 1980.

J. O’Loughlin, J. Lehr, and D. Loree, “High repetition rate charging a Marx type generator,” in Pulsed Power Plasma Science, 2001. PPPS-2001. Digest of Technical Papers, 2001, vol. 1, pp. 242–245 vol.1.

S. Roy and A. Debnath, “Procedural Perfection in Impulse Shape Generation for Indoor Type Impulse Test of Power Transformers,” Global Journals of Engineering Research, vol. 10, no. 7, 2010.

K. S. Cha, T. H. Kim, and S. J. Kim, “Pull-out Characteristics of Expanded Anchor Using Pulse Discharge Technology,” in Pan-Am CGS Geotechnical Conferernce, 2011.

S. Moran, “The Basics of Electric Weapons and Pulsed-Power Technologies,” RDT&E, Acquisition, and Warfare Management, vol. 7, no. 4, p. 50, 2011.

T. Prabaharan, A. Shyam, R. Shukla, P. Banerjee, S. Sharma, P. Deb, R. Verma, R. Kumar, R. Das, and B. Das, “Development of 2.4 ns rise time, 300 kV,~ 500 MW compact co-axial Marx generator,” Indian Journal of Pure & Applied Physics, vol. 49, pp. 64–72, 2011.

D. Benzel and M. D. Pocha, “1000-V, 300 ps pulse-generation circuit using silicon avalanche devices,” Review of Scientific Instruments, vol. 56, no. 7, p. 1456, 1985.

R. P. Gupta and W. Murray, “Pulsed high electric field sterilization,” in Pulsed Power Conference, 1989. 7th, 1989, pp. 58–64.

R. J. Baker, “High voltage pulse generation using current mode second breakdown in a bipolar junction transistor,” Review of scientific instruments, vol. 62, no. 4, pp. 1031–1036, 1991.

J. Wang, L. Dong, and Y. Fu, “Modeling of UHF voltage multiplier for radio-triggered wake-up circuits,” International Journal of Circuit Theory and Applications, vol. 39, no. 11, pp. 1189–1197, 2011.

S. C. Glidden and H. D. Sanders, “Solid State Marx Generator,” in Power Modulator Symposium, 2006. Conference Record of the 2006 Twenty-Seventh International, 2006, pp. 314–317.

S. V. G. Vardigans and D. De Cogan, “A bipolar pulse tester for semiconductor devices,” Journal of Physics E: Scientific Instruments, vol. 19, no. 12, p. 1016, 1986.

J. F. Kolb, S. Kono, and K. H. Schoenbach, “Nanosecond pulsed electric field generators for the study of subcellular effects,” Bioelectromagnetics, vol. 27, no. 3, pp. 172–187, 2006.

M. Reberšek and D. Miklavcic, “Advantages and disadvantages of different concepts of electroporation pulse generation,” AUTOMATIKA, vol. 52, no. 1, pp. 12–19, 2011.

B.-L. Qin, G. V Barbosa-Canovas, B. G. Swanson, P. D. Pedrow, and R. G. Olsen, “Inactivating microorganisms using a pulsed electric field continuous treatment system,” Industry Applications, IEEE Transactions on, vol. 34, no. 1, pp. 43–50, 1998.

T. Y. Tsong, “On electroporation of cell membranes and some related phenomena,” Bioelectrochemistry and Bioenergetics, vol. 24, no. 3, pp. 271–295, Dec. 1990.

K. Huang and J. Wang, “Designs of pulsed electric fields treatment chambers for liquid foods pasteurization process: A review,” Journal of Food Engineering, vol. 95, no. 2, pp. 227–239, Nov. 2009.

H. Akiyama, T. Sakugawa, T. Namihira, K. Takaki, Y. Minamitani, and N. Shimomura, “Industrial Applications of Pulsed Power Technology,” Dielectrics and Electrical Insulation, IEEE Transactions on, vol. 14, no. 5, pp. 1051–1064, 2007.

J. A. Casey, R. Ciprian, I. Roth, M. A. Kempkes, M. P. J. Gaudreau, and F. O. Arntz, “Marx Bank Technology for Accelerators and Colliders,” in IEEE International Power Modulators and High Voltage Conference, Proceedings of the 2008, 2008, pp. 124–127.

C. J. T. Steenkamp and M. P. Bradley, “Active Charge/Discharge IGBT Modulator for Marx Generator and Plasma Applications,” IEEE Transactions on Plasma Science, vol. 35, no. 2, pp. 473–478, Apr. 2007.

L. M. Redondo, J. F. Silva, H. Canacsinh, N. Ferrao, C. Mendes, R. Soares, J. Schipper, and A. Fowled, “Solid-state marx type circuit for the ISOLDE voltage target modulator,” in Pulsed Power Conference, 2009 IET European, 2009, pp. 1–4.

G. E. Dale, H. C. Kirbie, W. B. Haynes, C. E. Heath, T. A. Lopez, F. P. Romero, and R. M. Wheat, “Design and Application of a Diode-Directed Solid-State Marx Modulator,” in Pulsed Power Conference, 2005 IEEE, 2005, pp. 1211–1214.

L. M. Redondo, H. Canacsinh, and J. F. Silva, “Generalized solid-state marx modulator topology,” Dielectrics and Electrical Insulation, IEEE Transactions on, vol. 16, no. 4, pp. 1037–1042, 2009.

S. G. E. Pronko, M. T. Ngo, and R. F. K. Germer, “A solid-state Marx-type trigger generator,” in Power Modulator Symposium, 1988. IEEE Conference Record of the 1988 Eighteenth, 1988, pp. 211–214.

I. A. Lesk, “Germanium PNPN switches,” Electron Devices, IRE Transactions on, vol. 6, no. 1, pp. 28–35, 1959.

K. H. Tsui, A. V. F. Silva, I. B. Couceiro, A. D. Tavares Jr, and C. A. Massone, “Resonant narrowing of the nitrogen laser pulse by plasma impedance matching,” Quantum Electronics, IEEE Journal of, vol. 27, no. 3, pp. 448–453, 1991.

X. Cai, X. Zou, X. Wang, L. Wang, Z. Guan, and W. Jiang, “Over-volted breakdown and recovery of short nitrogen spark gaps,” Laser and Particle Beams, vol. 28, no. 03, pp. 443–450, 2010.

M. Ekenberg, E. Olofsson, R. Reinmann, and B. Johansson, “10. The Effect of ln-Cylinder Air lnjection on the Combustion Process in a Stoichiometric Air Assist G-Dl Engine Diluted with Residual Gas,” Direkteinspritzung im Ottomotor 3.: Forschungsergebnisse und aktueller Entwicklungsstand bei der Benzin-Direkteinspritzung., vol. 3, p. 188, 2001.

G. A. Mesyats, Pulsed power. Springer Science+ Business Media, Incorporated, 2005.

S. Westerlund and L. Ekstam, “Capacitor theory,” Dielectrics and Electrical Insulation, IEEE Transactions on, vol. 1, no. 5, pp. 826–839, 1994.
Published
2013-04-30
How to Cite
Toudeshki, A., Mariun, N., Hizam, H., Abdul Wahab, N. I., Hojabri, M., Sai’d, Y., Saadatian, O., Mansoor, M., & Saadatian, E. (2013). Derivation of Load Peak Voltage, Power Consumption and Potential Energy Management in a Thyristor Controlled Marx Impulse Generator for Capacitor Discharge Application. Majlesi Journal of Energy Management, 2(2). Retrieved from http://journals.iaumajlesi.ac.ir/em/index/index.php/em/article/view/66
Section
Articles

Most read articles by the same author(s)