Hybrid Neural Sliding Mode Control of a DFIG Speed in Wind Turbines

  • Habib Benbouhenni Ecole Nationale Polytechnique d'Oran Maurice Audin, Oran, Algeria
Keywords: Doubly fed induction generator, sliding mode command, neural network, chattering phenomenon, wind turbine.

Abstract

Wind energy (WG) generation industry has taken more concentration of fabrics. The WG promising renewable source of electrical energy generation for the future. This article applied neural network (NN) technique on the sliding mode command (SMC) of a 1.5 MW doubly-fed induction generator (DFIG) wind turbine (WT). In order to command the energy following between the stator of the DFIG and the grid, a proposed command design uses NN method is applied for implementing a neural command low to remove completely the chattering phenomenon on a traditional SMC strategy. The use of this technique provides very satisfactory performance for the DFIG command. The DFIG is tested in association with a WT. The simulation schemes were developed in Matlab/Simulink environment and the simulation results are presented and discussed for the whole system.

References

REFERENCE
[1] Z. Boudjema, R. Taleb, A. Yahdou, « A new DTC scheme using second order sliding mode and fuzzy logic of a DFIG for wind turbine system, » International Journal of Advanced Computer Science and Applications, Vol. 7, No. 8, pp. 49-56, 2016.
[2] M. Benbouzid, B. Beltran, Y. Amirat, G. Yao, J. Han, « Second-order sliding mode control for DFIG-based wind turbines fault ride-through capability enhancement, » ISA. Transactions, Elsevier, Vol. 53, No. 3, pp. 827-833, 2014.
[3] M. Hasni, Z. Mancer, S. Mekhtoub, S. Bacha, « Parametric identification of the doubly fed induction machine, » Energie Procedia, Vol. 18, pp. 177-186, 2012.
[4] Z. Boudjema, R. Taleb, Y. Djerriri, A. Yahdou, « A novel direct torque control using second order continuous sliding mode of a doubly fed induction generator for a wind energy conversion system, » Turkish Journal of Electrical Engineering & Computer Sciences, Vol. 25, pp. 965-975, 2017.
[5] E. H. Dursun, A. Durdu, « Speed control of a DC motor with variable load using sliding mode control, » International Journal of Computer and Electrical Engineering, Vol. 8, No. 3, pp. 219-226, 2016.
[6] Z. Boudjema, A. Meroufel, Y. Djerriri, E. Bounadja, « Fuzzy sliding mode control of a doubly fed induction generator for wind energy conversion, » Carpathian Journal of Electronic and Computer Engineering, Vol. 6, No. 2, pp. 7-14, 2013.
[7] F. Benezzek, W. Bourbia, B. Bensaker, « flatness based nonlinear sensorless control of induction motor system, » International Journal of Power Electronics and Drive System, Vol. 7, No. 1, pp. 265-278, 2016.
[8] E. Benyoussef, A. Meroufel, S. Barkat, « Three-level DTC based on fuzzy logic and neural network of sensorless DSSM using extende kalman filter, » International Journal of Power Electronics and Drive System, Vol. 5, No. 4, pp. 453-463, 2015.
[9] A. Yahdou, B. Hemici, Z. Boudjema, « Second order sliding mode control of a dual-rotor wind turbine system by employing a matrix converter, » Journal of Electrical Engineering, Vol. 16, No. 4, pp. 1-11, 2016.
[10] A. Medjber, A. Moualdia, A. Mellit, M. A. Guessoum, « Comparative study between direct and indirect vector control applied to a wind turbine aquipped with a double-fed asynchronous machine Article, » International Journal of Renewable Energy Research, Vol. 3, No. 1, pp. 88-93, 2013.
[11] F. Senani, A. Rahab, H. Benalla, « Modeling and control of active and reactive powers of wind conversion system in variable speed based on DFIG, » Revue des Energies Renouvelables, Vol. 18, No. 4, pp. 643-655, 2015.
[12] S. Manivannan, K. Senthilnathan, P. Selvabharathi, K. Rajalashmi, « A comparative study of different approaches presents in two level space vector pulse width modulated three phase voltage source inverters, » International Journal of Energing Engineering Research and Technology, Vol. 2, No. 5, pp. 1-18, 2014.
[13] T. Sutikno, A. Jidin, M. F. Basar, « Simple realization of 5-segment discontinuons SVPWM based on FPGA, »International Journal of Computer and Electrical Engineering, Vol. 2, No. 1, pp. 1793-8163, 2010.
[14] A. K. Bilhan, E. Akbal, « Modeling and simulation of two-level space vector PWM inverter using photovoltaic cells as DC source, » International Journal of Electronics, Mechanical and Mechatronics Engineering, Vol. 2, No. 4, pp. 311-317, 2012.
[15] A. Idir, M. Kidouche, « Direct torque control of three phase induction motor drive using fuzzy logic controllers for low torque ripple, » Proceedings Engineering & Technology, Vol. 2, pp. 78-83, 2013.
[16] M. Lešo, J. Žilková, M. Biroš, P. Talian, « Survey of control methods for DC-DC converters, » Acta Electrotechnica et Informatica, Vol. 18, No. 3, pp. 41-46, 2018.
[17] B. Hamane, M. L. Doumbia, M. Bouhamida, A. Draou, H. Chaoui, M. Benghanem, « Comparative study of PI, RST, Sliding mode and fuzzy supervisory controllers for DFIG based wind energy conversion system, » International Journal of Renewable Energy Research, Vol. 5, No. 4, pp. 1174-1184, 2015.
[18] Z. Boudjema, A. Meroufel, Y. Djerriri, « Nonlinear control of a doubly fed induction generator for wind energy conversion, » Carpathian Journal of Electronic and Computer Engineering, Vol. 6, No. 1, pp. 28-35, 2013.
[19] B. Zinelaabidine, A. Meroufel, A. Amari, « Robust control of a doubly fed induction generator (DFIG) fed by a direct AC-AC converter, » Przegląd Elektrotechniczny, Vol. 12, pp. 213-221, 2012.
[20] Y. Bekakra, D. Ben Attous, « Comparison study between SVM and PWM inverter in sliding mode control of active and reactive power control of a DFIG for variable speed wind energy, » International Journal of Renewable Energy Research, Vol. 2, No. 3, pp. 471-476, 2012.
Published
2019-04-09
Section
Articles